Plasma-based Control of Supersonic Nozzle Flow
نویسنده
چکیده
The flow structure obtained when Localized Arc Filament Plasma Actuators (LAFPA) are employed to control the flow issuing from a perfectly expanded Mach 1.3 nozzle is elucidated by visualizing coherent structures obtained from Implicit Large-Eddy Simulations. The computations reproduce recent experimental observations at the Ohio State University to influence the acoustic and mixing properties of the jet. Eight actuators were placed on a collar around the periphery of the nozzle exit and selectively excited to generate various modes, including first and second mixed (m = ±1 and m = ±2) and axisymmetric (m = 0). In this fluid dynamics video (mpeg-1, mpeg-2), unsteady and phase-averaged quantities are displayed to aid understanding of the vortex dynamics associated with the m = ±1 and m = 0 modes excited at the preferred column-mode frequency (Strouhal number 0.3). The unsteady flow in both contains a broad spectrum of coherent features. For m = ±1, the phase-averaged flow reveals the generation of successive distorted elliptic vortex rings with axes in the flapping plane, but alternating on either side of the jet axis. This generates a chain of structures where each interacts with its predecessor on one side and its successor on the other. Through self and mutual interaction, the leading segment of each loop is pinched and passes through the previous ring before rapidly breaking up, and the mean jet flow takes on an elliptic shape. The m = 0 mode exhibits relatively stable roll-up events, with vortex ribs in the braid regions connecting successive large coherent structures. Results with other modes are described in Ref. 1. 1 ar X iv :0 90 9. 51 10 v1 [ ph ys ic s. fl udy n] 2 8 Se p 20 09
منابع مشابه
Control of Nozzle Flow Using Microjets at Supersonic Mach Regime
This article reports the active control of base flows using the experimental procedure. Active control of base pressure helps in reducing the base drag in aerodynamic devices having suddenly expanded flows. Active control in the form of microjets having 0.5 mm radius placed at forty-five degrees apart is employed to control the base pressure. The Mach numbers of the present analysis are 1.7, 2....
متن کاملThe numerical simulation of compressible flow in a Shubin nozzle using schemes of Bean-Warming and flux vector splitting
Over the last ten years, robustness of schemes has raised an increasing interest among the CFD community. The objective of this article is to solve the quasi-one-dimensional compressible flow inside a “Shubin nozzle” and to investigate Bean-Warming and flux vector splitting methods for numerical solution of compressible flows. Two different conditions have been considered: first, there is a sup...
متن کاملModelling of Suddenly Expanded Flow Process in Supersonic Mach Regime using Design of Experiments and Response Surface Methodology
The present work is an attempt to model, analyze, and control the flow at the base of an abruptly expanded circular duct by using design of experiments (DOE) and response surface methodology (RSM). Tiny-jets in the form of orifice were positioned at an interval of 900, 6.5 mm from the primary axis of the main jet of the nozzle. Experiments were conducted to measure two responses namely, base pr...
متن کاملA Low Cost Numerical Simulation of a Supersonic Wind-tunnel Design
In the present paper, a supersonic wind-tunnel is designed to maintain a flow with Mach number of 3 in a 30cm×30cm test section. An in-house CFD code is developed using the Roe scheme to simulate flow-field and detect location of normal shock in the supersonic wind-tunnel. In the Roe scheme, flow conditions at inner and outer sides of cell faces are determined using an upwind biased algorithm. ...
متن کاملON OPTIMAL NOZZLE SHAPES OF GAS-DYNAMIC LASERS
Pontryagin's principle is used to study the shape of the supersonic part of the nozzle of a carbon dioxide gas-dynamic laser whose gain is maximal. The exact shape is obtained for the uncoupled approximation of Anderson's bimodal model. In this case, if sharp corners are allowed, the ceiling of the supersonic part consists of a slant rectangular sheet followed by a horizontal one; otherwise...
متن کاملExistence and Stability of Multidimensional Transonic Flows through an Infinite Nozzle of Arbitrary Cross-sections
We establish the existence and stability of multidimensional transonic flows with transonic shocks through an infinite nozzle of arbitrary cross-sections, including a slowly varying de Lavel nozzle. The transonic flow is governed by the inviscid steady potential flow equation with supersonic upstream flow at the entrance, uniform subsonic downstream flow at the infinite exit, and the slip bound...
متن کامل